824 research outputs found

    Strongly anharmonic current-phase relation in ballistic graphene Josephson junctions

    Full text link
    Motivated by a recent experiment directly measuring the current-phase relation (CPR) in graphene under the influence of a superconducting proximity effect, we here study the temperature dependence of the CPR in ballistic graphene SNS Josephson junctions within the the self-consistent tight-binding Bogoliubov-de Gennes (BdG) formalism. By comparing these results with the standard Dirac-BdG method, where rigid boundary conditions are assumed at the SN interfaces, we show on a crucial importance of both proximity effect and depairing by current for the CPR. The proximity effect grows with temperature and reduces the skewness of the CPR towards the harmonic result. In short junctions (L<ξL<\xi) current depairing is also important and gives rise to a critical phase ϕc<π/2\phi_c<\pi/2 over a wide range of temperatures and doping levels.Comment: 7 pages, 4 figures. v2 contains very minor change

    Position-dependent noncommutativity in quantum mechanics

    Full text link
    The model of the position-dependent noncommutativety in quantum mechanics is proposed. We start with a given commutation relations between the operators of coordinates [x^{i},x^{j}]=\omega^{ij}(x), and construct the complete algebra of commutation relations, including the operators of momenta. The constructed algebra is a deformation of a standard Heisenberg algebra and obey the Jacobi identity. The key point of our construction is a proposed first-order Lagrangian, which after quantization reproduces the desired commutation relations. Also we study the possibility to localize the noncommutativety.Comment: published version, references adde

    Gauge invariance and classical dynamics of noncommutative particle theory

    Full text link
    We consider a model of classical noncommutative particle in an external electromagnetic field. For this model, we prove the existence of generalized gauge transformations. Classical dynamics in Hamiltonian and Lagrangian form is discussed, in particular, the motion in the constant magnetic field is studied in detail.Comment: 10 page

    Current fluctuations in composite conductors: Beyond the second cumulant

    Full text link
    Employing the non-linear σ\sigma-model we analyze current fluctuations in coherent composite conductors which contain a diffusive element in-between two tunnel barriers. For such systems we explicitly evaluate the frequency-dependent third current cumulant which also determines the leading Coulomb interaction correction to shot noise. Our predictions can be directly tested in future experiments.Comment: 6 pages, 1 figur

    Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks

    Get PDF
    We report on the transport properties of an array of N about 30 interconnected Nb nanowires, grown by sputtering on robust porous Si substrates. The analyzed system exhibits a broad resistive transition in zero magnetic field, H, and highly nonlinear V(I) characteristics as a function of H which can be both consistently described by quantum tunneling of phase slips.Comment: accepted for publication on Appl. Phys. Let

    Proximity effect in normal metal-multiband superconductor hybrid structures

    Get PDF
    A theory of the proximity effect in normal metal¿multiband superconductor hybrid structures is formulated within the quasiclassical Green's function formalism. The quasiclassical boundary conditions for multiband hybrid structures are derived in the dirty limit. It is shown that the existence of multiple superconducting bands manifests itself as the occurrence of additional peaks in the density of states in the structure. The interplay between the proximity effect and the interband coupling influences the magnitudes of the gaps in a superconductor in a nontrivial way and can even give rise to an enhancement of multiband superconductivity by the proximity to a superconductor with a lower transition temperature. The developed theory is applied to the calculation of supercurrent in multiband superconductor¿normal metal¿superconductor Josephson junctions with low-transparent interfaces, and the results are compared with the predictions for multiband tunnel junctions

    Crossed Andreev reflection in diffusive contacts

    Full text link
    Crossed Andreev reflection in multiterminal structures in the diffusive regime is addressed within the quasiclassical Keldysh-Usadel formalism. The elastic cotunneling and crossed Andreev reflection of quasiparticles give nonlocal currents and voltages (depending on the actual biasing of the devices) by virtue of the induced proximity effect in the normal metal electrodes. The magnitude of the nonlocal processes is found to scale with the square of the barrier transparency and to decay exponentially with interface spacing. Nonlocal cotunneling and crossed Andreev conductances are found to contribute equally to the nonlocal current, which is of relevance to the use of normal metal-superconducting heterostructures as sources of entanglement

    Nonmonotonic temperature dependence of critical current in diffusive d-wave junctions

    Get PDF
    We study the Josephson effect in D/I/DN/I/D junctions, where I, DN and D denote an insulator, a diffusive normal metal and a d-wave superconductor, respectively.The Josephson current is calculated based on the quasiclassical Green's function theory with a general boundary condition for unconventional superconducting junctions. In contrast to s-wave junctions, the product of the Josephson current and the normal state resistance is enhanced by making the interface barriers stronger. The Josephson current has a nonmonotonic temperature dependence due to the competition between the proximity effect and the midgap Andreev resonant states.Comment: 5 pages, 4 figure
    corecore